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1 Introduction

The theory of impulsive differential equations is an important area of scientific activity, since
every nonimpulsive differential equation can be regarded as an impulsive differential equation
with no impulse effect, i.e., the corresponding impulse factor is the unit. This fact makes it
more interesting than the corresponding theory of nonimpulsive differential equations. More-
over, such equations naturally appear in the modeling of several real-world phenomena in
many areas such as physics, biology and engineering.

The first paper on oscillation of impulsive delay differential equations [7] was published in
1989 (see also [12], one of the first papers on the stability of impulsive differential equations).
From the publication of this paper up to the present time, impulsive delay differential equa-
tions started receiving attention of many mathematicians and numerous papers have been
published on this class of equations. Most of the publications are devoted to oscillation of
first-order impulsive delay differential equations with instantaneous impulse conditions (see
for instance [3–5, 7, 16–18, 20–22]). However, to the best of our knowledge, there is not much
done in the direction of oscillation and stability of impulsive delay differential equations when
the impulse condition also involves a delay argument. Results dealing with retarded impulse
conditions are relatively scarce, for instance, we can only find a few papers which only deal
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with the stability property of the solutions (see for instance [1, 2]). These results include de-
lays in the impulse conditions since they study equations under distributed delays. Thus, their
impulse conditions require some memory. Unfortunately, there seems to be nothing accom-
plished in revealing the oscillation properties of equations with retarded impulse conditions
in the absence of distributions. In this paper, we shall draw our attention to this untouched
problem. More precisely, the aim of this paper is to deliver answers to the following ques-
tions on the stability and oscillatory behaviour of the solutions to impulsive delay differential
equations: “If delay differential equations without impulses are oscillatory, will their solu-
tions continue to oscillate in the absence of retarded impulse perturbations?” and “If the zero
solution of delay differential equations without impulses is stable, when exposed to retarded
impulse effects, under what conditions the equation maintains the stability?” The motivation
of this paper mainly originates from the work [18], where Yan and Zhao studied impulsive
delay differential equations of the form{

x′(t) + p(t)x
(
τ(t)

)
= 0 for t ∈ [θ0, ∞)\{θk}k∈N0

x(θ+k ) = λkx(θk) for k ∈N0

and established very important connections with the following nonimpulsive delay differential
equation

y′(t) +

[
∏

τ(t)≤θk<t

1
λk

]
p(t)y

(
τ(t)

)
= 0 for t ∈ [θ0, ∞) almost everywhere.

Practically, their method introduces a transform which glues the continuous pieces in the
graph of a jump type discontinuous function endwise, i.e., sticks together the points at which
the jump magnitude of the function is momentary. The method developed by the authors
is very effective and it says that oscillation and stability of impulsive differential equation is
equivalent to that of the nonimpulsive differential equation (see also [3]). Combining the con-
nection in [18] with the results for nonimpulsive differential equations (see [8,11]) drops many
superfluous restrictions in the papers [4,5,7,12,16,20–22]. Due to technical and theoretical ob-
stacles, the same method is useless for studying impulsive delay differential equations when
the impulse condition involves delays as well. We shall therefore introduce a new method
which generalizes the method in [18] to such problems. Roughly speaking, the technique still
relies on construction of continuous functions from a jump type discontinuous function but
unlike the previous case, the jump magnitude at each given time is now allowed to depend
on the magnitude of a prior time. The technique employed in the present paper allows us
to study both oscillation and stability of such equations without putting any sign condition
on the coefficient. In [9, 13, 19], the readers may find stability results for delay differential
equations without impulses, which can be combined with our results. The results of this
paper improve, generalize and extend the qualitative theory of differential equations to im-
pulsive differential equations with retarded impulse conditions. We refer the readers to the
books [10, 14, 15], which cover the fundamental results of the theory on impulsive differential
equations.

Our attention in this paper centers on the qualitative behaviour of solutions of the impul-
sive delay differential equation{

x′(t) + p(t)x
(
τ(t)

)
= 0 for t ∈ [θ0, ∞)\{θk}k∈N0

x(θk) = λkx(θ−k−`) for k ∈N0
(1.1)
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under the following primary assumptions:

(A1) p : [θ0, ∞)→ R is a Lebesgue measurable and a locally essentially bounded function;

(A2) τ : [θ0, ∞) → R is a Lebesgue measurable function satisfying τ(t) ≤ t for all t ∈
[θ0, ∞) and limt→∞ τ(t) = ∞;

(A3) ` ∈ N0 and {θk}k∈N ∪ {θ−`, θ−`+1, . . . , θ0} is an increasing divergent sequence of
reals;

(A4) {λk}k∈N0 is a sequence of reals which has no zero terms.

We define AC([ρθ0 , θ0], R), where ρt := inf{τ(ξ) : ξ ∈ [t, ∞)} for t ∈ [θ0, ∞), to be the set
of functions absolutely continuous functions defined on [ρθ0 , θ0].

Definition 1.1 (Solution). Suppose that (A1)–(A4) hold. A function x : [ρθ0 , ∞) → R denoted
by x(·, θ0, ϕ) is called a solution of the initial value problem

x′(t) + p(t)x
(
τ(t)

)
= 0 for t ∈ [θ0, ∞)

x(θk) = λkx(θ−k−`) for k ∈N0

x(t) = ϕ(t) for t ∈ [ρθ0 , θ0),

(1.2)

where ϕ ∈ AC([ρθ0 , θ0], R) is given, if the following conditions are satisfied:

(i) for any k ∈N0, x is absolutely continuous on the interval [θk, θk+1);

(ii) for any k ∈N0, both right-sided and left-sided limits of x exist at θk with x(θk) = x(θ+k );

(iii) x is equal to the initial function ϕ on the interval [ρθ0 , θ0], and satisfies the differential
equation

x′(t) + p(t)x
(
τ(t)

)
= 0 for every t ∈ [θ0, ∞)\{θk}k∈N0 ;

(iv) x satisfies the impulse condition

x(θk) = λkx(θ−k−`) for all k ∈N0,

and it may have jump type discontinuity at the impulse points {θk}k∈N0 .

Definition 1.2 (Oscillation). A solution of (1.1) is said to be nonoscillatory if it is eventually
either positive or negative. Otherwise, the solution is called oscillatory. In other words, a
solution is said to be oscillatory if there exists an increasing divergent sequence {ξk}k∈N ⊂
[θ0, ∞) such that x(ξ+k )x(ξ−k ) ≤ 0 for all k ∈N.

For any given ϕ ∈ AC([ρt, t], R), we define ‖ϕ‖ := sup{|ϕ(ξ)| : ξ ∈ [ρt, t]}.

Definition 1.3 (Stability).

(i) The zero solution of (1.1) is said to be stable, if for every ε > 0 and every θ ∈ [θ0, ∞),
there exists δ = δ(ε, θ) > 0 such that any ϕ ∈ AC([ρθ , θ], R) with ‖ϕ‖ < δ implies
|x(t, θ, ϕ)| < ε for all t ∈ [θ, ∞).

(ii) The zero solution of (1.1) is said to be uniformly stable, if for every ε > 0 and every
θ ∈ [θ0, ∞), there exists δ = δ(ε) > 0 such that any ϕ ∈ AC([ρθ , θ], R) with ‖ϕ‖ < δ

implies |x(t, θ, ϕ)| < ε for all t ∈ [θ, ∞).
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(iii) The zero solution of (1.1) is said to be asymptotically stable, if it is stable, and for any
θ ∈ [θ0, ∞) there exists δ = δ(θ) such that any ϕ ∈ AC([ρθ , θ], R) with ‖ϕ‖ < δ implies
limt→∞ x(t, θ, ϕ) = 0.

The paper is organized as follows: in Section 2, we construct the major equipments of
the paper which all the results in the sequel will depend on; in Section 3, we present our
main results, which combine qualitative theory of delay differential equations and qualitative
theory of delay differential equations in the absence of retardations in the impulse conditions;
in Section 4, to conclude the paper, we make our final comments and give a simple example
to mention the significance and applicability of the main results. In the sequel, we always
assume without further mentioning that ∏∅ := 1 and ∑∅ := 0.

2 Preparatory results

In this section, we shall introduce several tools required for our main purpose. For simplicity
of notation, we let θ−(`+1) := $θ0 . For i ∈ {0, 1, . . . , `}, we define

ϑi
k :=


θ0 −

[
θ−(`+1)+i+1 − θ−(`+1)+i

]
, k = −1

θ0, k = 0

ϑi
k−1 + θk(`+1)+i+1 − θk(`+1)+i, k ∈N,

which explicitly yields

ϑi
k = θ0 +

k

∑
ν=1

[
θν(`+1)+i+1 − θν(`+1)+i

]
for k ∈N.

Note that⋃
ν∈N0

[
ϑi

ν−1, ϑi
ν

)
=
[
θ0 − (θ−(`+1)+i+1 − θ−(`+1)+i), ∞

)
for each i ∈ {0, 1, . . . , `}.

For i ∈ {0, 1, . . . , `}, define

αi : [ϑi
−1, ∞)→

⋃
ν∈N0

[
θ(ν−1)(`+1)+i, θ(ν−1)(`+1)+i+1

)
by

αi(t) :=


t +
[
θi − θ0

]
+ ∑

θ0<ϑi
j≤t

j∈N

[
θj(`+1)+i − θ(j−1)(`+1)+i+1

]
, t ∈ [θ0, ∞)

t−
[
θ0 − θ−(`+1)+i+1

]
, t ∈ [ϑi

−1, θ0).

Then αi (i ∈ {0, 1, . . . , `}) maps the interval [ϑi
k−1, ϑi

k) onto [θ(k−1)(`+1)+i, θ(k−1)(`+1)+i+1) for
each k ∈N0.

Figure 2.1 is an illustration of the functions αi (i = 0, 1, . . . , `).
In addition to the primary assumptions introduced in the previous section, below, we list

two more primary assumptions.
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Figure 2.1: An illustration of the functions αi (i = 0, 1, 2) with ` = 2

(A5) For each i ∈ {0, 1, . . . , `},

t ∈
⋃

ν∈N0

[
θν(`+1)+i, θν(`+1)+i+1

)
if and only if

τ(t) ∈
⋃

ν∈N0

[
θ(ν−1)(`+1)+i, θ(ν−1)(`+1)+i+1

)
.

(A6) There exist functions σi : [θ0, ∞)→ [ϑi
−1, ∞) (i ∈ {0, 1, . . . , `}) such that

αi
(
σi(t)

)
= τ

(
αi(t)

)
for all t ∈ [θ0, ∞).

Remark 2.1. Note that for the case ` = 0, we have α0(t) = t for t ∈ [θ0, ∞), and thus we may
let σ0(t) = τ(t) for t ∈ [θ0, ∞) to have (A5) and (A6) satisfied.

Lemma 2.2. Assume that (A1)–(A6) hold. Let x = x(·, θ0, ϕ) be a solution of (1.2). Then, for
i ∈ {0, 1, . . . , `}, the function yi : [θ0, ∞)→ R defined by

yi(t) :=

 ∏
ϑi

j≤t
j∈N0

1
λj(`+1)+i

 x
(
αi(t)

)
for t ∈ [θ0, ∞) (2.1)

is absolutely continuous on [θ0, ∞). Moreover, i ∈ {0, 1, . . . , `}, the function yi is the solution of the
initial value problem

y′i(t) +

 ∏
σi(t)<ϑi

j≤t
j∈N0

1
λj(`+1)+i

 p
(
αi(t)

)
yi
(
σi(t)

)
= 0 for t ∈ [θ0, ∞) almost everywhere

yi(t) = ϕ
(
αi(t)

)
for t ∈ [ϑi

−1, θ0].

(2.2)

Proof. Let i ∈ {0, 1, . . . , `}, it is easy to see that yi is absolutely continuous on each of the
intervals [ϑi

k−1, ϑi
k) for each k ∈N0. Note that

αi(ϑ
i+
k ) = θi+

k(`+1)+i and αi(ϑ
i−
k ) = θ−

(k−1)(`+1)+i+1 = θ−k(`+1)+i−` for k ∈N0.
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We now show that yi(ϑ
i+
k ) = yi(ϑ

i−
k ) for all k ∈N. Indeed, for k ∈N, we have

yi(ϑ
i
k) =

 ∏
ϑi

j≤ϑi
k

j∈N0

1
λj(`+1)+i

 x
(
θk(`+1)+i

)
=

 ∏
ϑi

j≤ϑi
k

j∈N0

1
λj(`+1)+i

 λk(`+1)+ix
(
θ−k(`+1)+i−`

)

=

 ∏
ϑi

j<ϑi
k

j∈N0

1
λj(`+1)+i

 x
(
θ−k(`+1)+i−`

)
=

 ∏
ϑi

j<ϑi
k

j∈N0

1
λj(`+1)+i

 x
(
θ−
(k−1)(`+1)+i+1

)
=yi(ϑ

i−
k ),

which proves that yi(ϑ
i+
k ) = yi(ϑ

i−
k ), and hence yi is absolutely continuous on [ϑi

−1, ∞). On
the other hand, we have

y′i(t) +

 ∏
σi(t)<ϑi

j≤t
j∈N0

1
λj(`+1)+i

 p
(
αi(t)

)
yi
(
σi(t)

)

=

 ∏
ϑi

j≤t
j∈N0

1
λj(`+1)+i

 x′
(
αi(t)

)

+

 ∏
σi(t)<ϑi

j≤t
j∈N0

1
λj(`+1)+i

 p
(
αi(t)

)
 ∏

ϑi
j≤σi(t)
j∈N0

1
λj(`+1)+i

 x
(
αi
(
σi(t)

))

=

 ∏
ϑi

j≤t
j∈N0

1
λj(`+1)+i

{x′
(
αi(t)

)
+ p

(
αi(t)

)
x
(
τ(αi(t))

)}
= 0

(2.3)

for all t ∈ [θ0, ∞)\{θk}k∈N0 . Also it is not hard to see that the initial function associated with
this equation is ϕ ◦ αi on [ϑi

−1, θ0). The proof is therefore completed.

Figure 2.2 is a graphical illustration of the main idea in the construction of the functions
yi (i = 0, 1, . . . , `) from the solution x of (1.1).

Now, we define χi (i ∈ {0, 1, . . . , `}) to be the characteristic function of the interval⋃
ν∈N0

[
θν(`+1)+i, θν(`+1)+i+1

)
,

i.e.,

χi(t) :=


1, t ∈

⋃
ν∈N0

[
θν(`+1)+i, θν(`+1)+i+1

)
0 otherwise.
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For i ∈ {0, 1, . . . , `}, we define the function

βi :
⋃

ν∈N0

[
θ(ν−1)(`+1)+i, θ(ν−1)(`+1)+i+1

)
→
[
ϑi
−1, ∞

)
by

βi(t) :=


t−


[
θi − θ0

]
+ ∑

θj(`+1)+i≤t
j∈N

[
θj(`+1)+i − θ(j−1)(`+1)+i+1

], t ∈
⋃

ν∈N0

[
θν(`+1)+i, θν(`+1)+i+1

)
t +
[
θ0 − θ−(`+1)+i+1

]
, t ∈

[
θ−(`+1)+i, θ−(`+1)+i+1

)
.

It is not hard to see that for each i ∈ {0, 1, . . . , `}, αi ◦ βi and βi ◦ αi are the identity
mappings on the sets

⋃
ν∈N0

[
θ(ν−1)(`+1)+i, θ(ν−1)(`+1)+i+1

)
and

[
ϑi
−1, ∞

)
, respectively.

Lemma 2.3. Assume that (A1)–(A4) hold. Let x be a solution of (1.1) and the functions yi : [θ0, ∞)→
R (i ∈ {0, 1, . . . , `}) be defined by (2.1). Then

x(t) =
`

∑
µ=0

χµ(t)

 ∏
θj(`+1)+µ≤t

j∈N0

λj(`+1)+µ

 yµ(βµ(t)) for t ∈ [θ0, ∞). (2.4)

Proof. Let i ∈ {0, 1, . . . , `} and k ∈N0. From (2.1), we have

x
(
αi(t)

)
=

 ∏
ϑi

j≤t
j∈N0

λj(`+1)+i

 yi(t) for all t ∈
[
θ0, ∞),
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which yields

x(t) =

 ∏
ϑi

j≤βi(t)
j∈N0

λj(`+1)+i

 yi
(

βi(t)
)
=

 ∏
θj(`+1)+i≤t

j∈N0

λj(`+1)+i

 yi
(

βi(t)
)

for all t ∈ [θ0, ∞).

Therefore, we learn that (2.4) is true.

To give a converse analogue of Lemma 2.2, we need the following additional primary
assumption.

(A7) There exist functions σi : [θ0, ∞)→ [ϑi
−1, ∞) (i ∈ {0, 1, . . . , `}) such that

σi
(

βi(t)
)
= βi

(
τ(t)

)
for all t ∈ [θ0, ∞).

Lemma 2.4. Assume that (A1)–(A4), (A5) and (A7) hold. Let yi = yi(·, θ0, ϕi) (i ∈ {0, 1, . . . , `}) be
solutions of {

y′i(t) + qi(t)yi
(
σi(t)

)
= 0 for t ∈ [θ0, ∞)

yi(t) = ϕi(t) for t ∈ [ϑi
−1, θ0].

(2.5)

Then, x defined by (2.4) is a solution of the initial value problem

x′(t) +
`

∑
µ=0

χµ(t)

 ∏
τ(t)<θj(`+1)+µ≤t

j∈N0

λj(`+1)+µ

 qµ

(
βµ(t)

)
x
(
τ(t)

)
= 0 for t ∈ [θ0, ∞)

x(θk) = λkx(θ−k−`) for k ∈N0

x(t) =
`

∑
µ=0

χµ(t)ϕµ

(
βµ(t)

)
for t ∈ [θ−(`+1), θ0).

(2.6)

Proof. We shall first show that x defined by (2.4) satisfies the impulse condition in (2.6). Let
k ∈N0, then we may find r, i ∈N0 such that k = r(`+ 1) + i wand i ≤ `, and thus

x(θ+k ) = x
(
θ+r(`+1)+i

)
=

`

∑
µ=0

χµ

(
θr(`+1)+i

)  ∏
θj(`+1)+µ≤θr(`+1)+i

j∈N0

λj(`+1)+µ

 yµ

(
βµ(θ

+
r(`+1)+i)

)

=

 ∏
θj(`+1)+i≤θr(`+1)+i

j∈N0

λj(`+1)+i

 yi
(

βi(θ
+
r(`+1)+i)

)

= λr(`+1)+i

 ∏
θj(`+1)+i<θr(`+1)+i

j∈N0

λj(`+1)+i

 yi(ϑ
i
r)

= λr(`+1)+i

 ∏
θj(`+1)+i<θr(`+1)+i

j∈N0

λj(`+1)+i

 yi
(

βi(θ
−
(r−1)(`+1)+i+1)

)
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= λr(`+1)+i

`

∑
µ=0

χµ

(
θ−
(r−1)(`+1)+i+1

)  ∏
θj(`+1)+µ<θr(`+1)+i

j∈N0

λj(`+1)+µ

 yµ

(
βµ(θ

−
(r−1)(`+1)+i+1)

)
= λr(`+1)+ix

(
θ−
(r−1)(`+1)+i+1

)
= λr(`+1)+ix

(
θ−r(`+1)+i−`

)
= λkx(θ−k−`).

Now, we show that x defined by (2.4) satisfies the differential equation condition in (2.6) but
first note that

x′(t) =
`

∑
µ=0

χµ(t)

 ∏
θj(`+1)+i≤t

j∈N0

λj(`+1)+µ

 y′µ(βµ(t))

for all t ∈ (θk, θk+1) and all k ∈ N0 since the factor of yi is a step function (its derivative is
therefore 0) and βi is a combination of lines of slope 1. Now, we can compute that

x′(t) +
`

∑
µ=0

χµ(t)

 ∏
τ(t)<θj(`+1)+µ≤t

j∈N0

λj(`+1)+µ

 qµ

(
βµ(t)

)
x
(
τ(t)

)

=
`

∑
µ=0

χµ(t)

 ∏
θj(`+1)+µ≤t

j∈N0

λj(`+1)+µ

 y′µ(βµ(t))

+


`

∑
µ=0

χµ(t)

 ∏
τ(t)<θj(`+1)+µ≤t

j∈N0

λj(`+1)+µ

 qµ

(
βµ(t)

)
×


`

∑
µ=0

χµ

(
τ(t)

)  ∏
θj(`+1)+µ≤τ(t)

j∈N0

λj(`+1)+µ

 yµ

(
βµ(τ(t))

)
=

`

∑
µ=0

χµ(t)

 ∏
θj(`+1)+µ≤t

j∈N0

λj(`+1)+µ

 y′µ(βµ(t))

+


`

∑
µ=0

χµ(t)

 ∏
τ(t)<θj(`+1)+µ≤t

j∈N0

λj(`+1)+µ

 qµ

(
βµ(t)

)
×


`

∑
µ=0

χµ(t)

 ∏
θj(`+1)+µ≤τ(t)

j∈N0

λj(`+1)+µ

 yµ

(
σµ

(
βµ(t)

))
=

`

∑
µ=0

χµ(t)

 ∏
θj(`+1)+µ≤t

j∈N0

λj(`+1)+µ

{y′µ
(

βµ(t)
)
+ qµ

(
βµ(t)

)
yµ

(
σµ

(
βµ(t)

))}
= 0,
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where we have used the condition (A5) and (A7) in the third step above, and the property of
the characteristic function χi in the last step for collecting the terms in a single sum. It is not
hard to see that the solution x initiates with the function ∑`

µ=0 χµ × (ϕµ ◦ βµ) on [θ−(`+1), θ0).
The proof is therefore completed.

Remark 2.5. Assuming that (A1)–(A6) and (A7) are true, if we replace qi and ϕi in Lemma 2.4
with

[
∏σi(t)<ϑi

j≤t, j∈N0
(1/λj(`+1)+i)

]
× (p ◦ αi) and ϕ ◦ αi, respectively, then we obtain the con-

verse of Lemma 2.2.

3 Main results

In this section, by combining the conclusions of Lemmas 2.2–2.4 and Remark 2.5, we establish
the following fundamental theorem, which builds a bridge between impulsive differential
equations and nonimpulsive differential equations.

Theorem 3.1. Assume that (A1)–(A7) hold. Then the following assertions are true.

(i) If x(·, θ0, ϕ) is a solution of (1.1), then yi(·, θ0, ϕ ◦ αi) (i ∈ {0, 1, . . . , `}) defined by (2.1) is a
solution of (2.2).

(ii) If yi(·, θ0, ϕ ◦ αi) (i ∈ {0, 1, . . . , `}) are solutions of (2.2), then x(·, θ0, ϕ) defined by (2.4) is a
solution of (1.1).

Proof. The proof of the parts (i) and (ii) follow from Lemmas 2.2–2.4 and Remark 2.5, respec-
tively.

Next, we introduce an additional assumption to study oscillation of solutions to (1.1).

(A8) {λk}k∈N0 is a sequence of positive reals.

Theorem 3.2. Assume that (A1)–(A3), (A5)–(A8) hold. Then every solution of (1.1) is oscillatory
on
⋃

ν∈N0

[
θν(`+1)+i, θν(`+1)+i+1

)
for some i ∈ {0, 1, . . . , `} if and only if every solution of (2.2) is

oscillatory for the same i.

Proof. Suppose that x is a solution of (1.1), which is oscillatory on
⋃

ν∈N0

[
θν(`+1)+i, θν(`+1)+i+1

)
for some i ∈ {0, 1, . . . , `}. Then for the same i, the function yi defined by (2.1) is oscil-
latory on [θ0, ∞) since the condition (A8) implies that the transform is oscillation invari-
ant and the function αi maps the union of intervals

⋃
ν∈N0

[
θν(`+1)+i, θν(`+1)+i+1

)
onto the

half-line [θ0, ∞). Clearly, yi is a solution of (2.2) for the same i. Conversely, if for some
i ∈ {0, 1, . . . , `}, yi is an oscillating solution of (2.2), then x defined by (2.4) is oscillatory on⋃

ν∈N0

[
θν(`+1)+i, θν(`+1)+i+1

)
and is a solution to (1.1) because of the fact that βi maps the half-

line [θ0, ∞) onto the union of intervals
⋃

ν∈N0

[
θν(`+1)+i, θν(`+1)+i+1

)
. The proof is therefore

completed.

Corollary 3.3. Assume that (A1)–(A3), (A5)–(A8) hold. Then every solution of (1.1) is oscillatory if
every solution of (2.2) is oscillatory some i ∈ {0, 1, . . . , `}.

Remark 3.4. If every solution of (2.2) is nonoscillatory for all i ∈ {0, 1, . . . , `}, then this does
not mean that (1.1) is nonoscillatory too. For instance, if the solutions yi and yj of (2.2) are of
different sign, then the solution x of (1.1), which is defined by (2.4), has different signs on the
union intervals

⋃
ν∈N0

[
θν(`+1)+i, θν(`+1)+i+1

)
and

⋃
ν∈N0

[
θν(`+1)+j, θν(`+1)+j+1

)
, and therefore,

x is oscillatory.
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Remark 3.5. If the sequence {λk}k∈N0 has a negative subsequence {λkl}l∈N0 , then every solu-
tion of (1.1) changes sign at the impulse points {θkl}l∈N0 , i.e., every solution of (1.1) oscillates.

Next to study stability of (1.1), we give two more assumptions.

(A9) For any s ≥ θ0, there exists a positive constant M = M(s) such that

`

∑
k=0

∣∣∣∣∣∣∣∣∣ ∏
s<ϑk

j≤t
j∈N0

1
λj(`+1)+k

∣∣∣∣∣∣∣∣∣ ≤ M for all t ≥ s.

(A10) There exists a positive constant M such that

`

∑
k=0

∣∣∣∣∣∣∣∣∣ ∏
s<ϑk

j≤t
j∈N0

1
λj(`+1)+k

∣∣∣∣∣∣∣∣∣ ≤ M for all s, t ≥ θ0 with t ≥ s.

Theorem 3.6. Assume that (A1)–(A7) hold. Then the following assertions are true.

(i) Suppose that (A9) holds. If the zero solution of (2.2) is stable for all i ∈ {0, 1, . . . , `}, then so is
the zero solution of (1.1).

(ii) Suppose that (A10) holds. If the zero solution of (2.2) is uniformly stable for all i ∈ {0, 1, . . . , `},
then so is the zero solution of (1.1).

(iii) Suppose that (A9) holds. If the zero solution of (2.2) is asymptotically stable for all i ∈
{0, 1, . . . , `}, then so is the zero solution of (1.1).

Proof. We shall only give a proof for the part (i) since the proof of the parts (ii) and (iii)
follow similar arguments. Let ε > 0 and s ∈ [θ0, ∞). From the hypothesis, for ε i > 0 with
maxi∈{0,1,...,`}{ε i} ≤ ε and si ∈ [θ0, ∞) with maxi∈{0,1,...,`}{αi(si)} ≤ s, we may find δi =

δi(ε i, si) > 0 such that ϕi ∈ AC([ρi
si

, si], R), where ρi
t := inf{σi(ξ) : ξ ∈ [t, ∞)} for t ∈ [θ0, ∞),

with ‖ϕi‖ < δi, which implies

|yi(t)| <
ε i

M(`+ 1)
for all t ∈ [si, ∞).

From (2.4) and (A9), we have

|x(t)| =

∣∣∣∣∣∣∣∣
`

∑
µ=0

χµ(t)

 ∏
s<θj(`+1)+µ≤t

j∈N0

λj(`+1)+µ

 yµ

(
βµ(t)

)∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
`

∑
µ=0

χµ(t)

 ∏
βµ(s)<ϑ

µ
j ≤βµ(t)

j∈N0

λj(`+1)+µ

 yµ

(
βµ(t)

)
∣∣∣∣∣∣∣∣∣



12 B. Karpuz

≤
`

∑
µ=0

χµ(t)

 ∏
βµ(s)<ϑ

µ
j ≤βµ(t)

j∈N0

λj(`+1)+µ

 ∣∣yµ

(
βµ(t)

)∣∣

≤

 `

∑
µ=0

 ∏
βµ(s)<ϑ

µ
j ≤βµ(t)

j∈N0

λj(`+1)+µ



(

`

∑
µ=0

∣∣yµ

(
βµ(t)

)∣∣)

<M
`

∑
µ=0

ε i

(`+ 1)M
≤ ε

for all t ∈ [s, ∞). The zero solution of (1.1) is therefore stable.

(A11) For any s ≥ θ0, there exists a positive constant N = N(s) such that

`

∑
k=0

∣∣∣∣∣∣∣∣ ∏
s<θj(`+1)+k≤t

j∈N0

λj(`+1)+k

∣∣∣∣∣∣∣∣ ≤ N for all t ≥ s.

(A12) There exists a positive constant N such that

`

∑
k=0

∣∣∣∣∣∣∣∣ ∏
s<θj(`+1)+k≤t

j∈N0

λj(`+1)+k

∣∣∣∣∣∣∣∣ ≤ N for all s, t ≥ θ0 with t ≥ s.

As a dual version of Theorem 3.6, we give the following result. The proof is omitted since
it makes use of almost the same arguments.

Theorem 3.7. Assume that (A1)–(A7) hold. Then the following assertions are true.

(i) Suppose that (A11) holds. If the zero solution of (1.1) is stable, then so is the zero solution of
(2.2) for all i ∈ {0, 1, . . . , `}.

(ii) Suppose that (A12) holds. If the zero solution of (1.1) is uniformly stable, then so is the zero
solution of (2.2) for all i ∈ {0, 1, . . . , `}.

(iii) Suppose that (A11) holds. If the zero solution of (1.1) is asymptotically stable, then so is the zero
solution of (2.2) for all i ∈ {0, 1, . . . , `}.

We conclude this section with the following corollary which combines the conclusions of
Theorem 3.6 and Theorem 3.7.

Corollary 3.8. Assume that (A1)–(A7) hold. Then the following assertions are true:

(i) Suppose that (A9) and (A11) hold. The zero solution of (1.1) is stable if and only if so is the zero
solution of (2.2) for all i ∈ {0, 1, . . . , `}.

(ii) Suppose that (A10) and (A12) holds. If the zero solution of (1.1) is uniformly stable if and only
if so is the zero solution of (2.2) for all i ∈ {0, 1, . . . , `}.

(iii) Suppose that (A9) and (A11) holds. If the zero solution of (1.1) is asymptotically stable if and
only if so is the zero solution of (2.2) for all i ∈ {0, 1, . . . , `}.
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4 Final comments

In this section, we shall make certain comments about how to extend the method, and then
present a simple example to illustrate the applicability of our results.

The method introduced here allows the study of qualitative behaviour of equations of the
form x′(t) +

n

∑
i=1

pi(t)x
(
τi(t)

)
= 0 for t ∈ [θ0, ∞)\{θk}k∈N0

x(θk) = λkx(θ−k−`) for k ∈N0,

however, just for simplicity of notation, we have restricted our attention to (1.1). On the other
hand, one can obtain straightforwardly the corresponding results for impulsive differential
equations with left-continuous solutions, i.e., x(θk) = x(θ−k ) for all k ∈ N0. Assuming that
the coefficient p is nonnegative, one would wish to have results for left-continuous solutions
since eventually positive solutions become nonincreasing in this case. Since our results in-
troduced in Section 3 do not require any sign condition on the coefficient p, we preferred
right-continuous solutions.

Suppose there exist n ∈N and a set of additional points

{θ−n(`+1), θ−n(`+1)+1, . . . , θ−n(`+1)} ⊂ [ρθ0 , θ−`]

with the convention θ−n(`+1) := ρθ0 . Then, we may let

ϑi
k :=


ϑi

k+1 −
[
θk(`+1)+i+1 − θk(`+1)+i

]
, k ∈ {−n,−n + 1, . . . ,−1}

θ0, k = 0

ϑi
k−1 + θk(`+1)+i+1 − θk(`+1)+i, k ∈N,

and extend the domain of the function αi in a very natural way such that

αi(t) :=



t +
[
θi − θ0

]
+ ∑

θ0<ϑi
j≤t

j∈N

[
θj(`+1)+i − θ(j−1)(`+1)+i+1

]
, t ∈ [θ0, ∞)

t−

θ0 − θ−(j+1)(`+1)+i+1
ϑi
−(j+1)<t≤ϑi

−j
j∈N

+ ∑
t<ϑi

−j≤ϑi
−1

j∈N

[
θ−j(`+1)+i+1 − θ−j(`+1)+i

]
, t ∈ [ϑi

−n, θ0)

for t ∈ [ϑi
−n, ∞), and similarly we can extend the function

βi :
⋃

ν∈N0

[
θ(ν−n)(`+1)+i, θ(ν−n)(`+1)+i+1

)
→
[
ϑi
−n, ∞

)
.
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by

βi(t) :=



t−


[
θi − θ0

]
+ ∑

θj(`+1)+i≤t
j∈N

[
θj(`+1)+i − θ(j−1)(`+1)+i+1

] ,

t ∈
⋃

ν∈N0

[
θν(`+1)+i, θν(`+1)+i+1

)

t +


θ0 − θ −(j+1)(`+1)+i+1

θ−(j+1)(`+1)+i<t≤θ−j(`+1)+i
j∈N

− ∑
t<θ−j(`+1)+i≤θ−(`+1)+i

j∈N

[
θ−j(`+1)+i+1 − θ−j(`+1)+i

],

t ∈
n⋃

ν=1

[
θ−ν(`+1)+i, θ−ν(`+1)+i+1

)
.

Therefore our results in Section 3 are still true if we replace (A5)–(A7) with the following
assumptions, respectively.

(A13) For each i ∈ {0, 1, . . . , `},

t ∈
⋃

ν∈N0

[
θν(`+1)+i, θν(`+1)+i+1

)
if and only if

τ(t) ∈
⋃

ν∈N0

[
θ(ν−n)(`+1)+i, θ(ν−n)(`+1)+i+1

)
.

(A14) There exist functions σi : [θ0, ∞)→ [ϑi
−n, ∞) such that

αi
(
σi(t)

)
= τ

(
αi(t)

)
for all t ∈ [θ0, ∞)

and for i ∈ {0, 1, . . . , `}.

(A15) There exist functions σi : [θ0, ∞)→ [ϑi
−n, ∞) such that

σi
(

βi(t)
)
= βi

(
τ(t)

)
for all t ∈ [θ0, ∞)

and for i ∈ {0, 1, . . . , `}.

The following example considers the extended versions of the results in Section 3.

Example 4.1. Consider{
x′(t) + px

(
t− n(`+ 1)

)
= 0 for t ∈ R+

0 \N0

x(k) = λmod(k,`+1)x
(
(k− `)−

)
for k ∈N0,

(4.1)

where n ∈ N, ` ∈ N0, p ∈ R and λi ∈ R\{0} for i ∈ {0, 1, . . . , `}. For this equation, we
have τ(t) = t− n(`+ 1) for t ∈ R+

0 , which satisfies the condition (A13) if we let θk = k for
k ∈ {−n(`+ 1),−n(`+ 1) + 1, . . .}. For i ∈ {0, 1, . . . , `}, we can easily compute that ϑi

k = k
for k ∈ {−n,−n + 1, . . .}, and for t ∈ [−n, ∞), we have
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αi(t) =



t + i + ∑
j≤t

j∈N

`, t ∈ [0, ∞)

t +

−(j + 1)(`+ 1) + i + 1
−(j+1)<t≤−j

j∈N

+ ∑
t<−j≤−1

j∈N

1, t ∈ [−n, 0)

= t + i + btc`,

where b·c denotes the flooring function. For i ∈ {0, 1, . . . , `}, letting σi(t) = t − n for
t ∈ [−n, ∞), we see that

αi
(
σi(t)

)
= σi(t) + i + bσi(t)c` = (t− n) + i + b(t− n)c`
= (t− n) + i +

(
btc − n

)
` = t + i + btc`− n(`+ 1)

= τ
(
t + i + btc`

)
= τ(σi(t))

for all t ∈ [−n, ∞), which shows that (A14) is satisfied. One can show very similarly that
(A15) is also satisfied. Then, from Lemma 2.2, for i ∈ {0, 1, . . . , `}, the associated differential
equations have the form

y′i(t) +
p

λn
i

yi(t− n) = 0 for t ∈ [0, ∞) almost everywhere

since

∏
t−n<j≤t

j∈N0

1
λmod(j(`+1)+i,`+1)

=
1

λn
i

for all t ∈ [0, ∞).

Clearly, (A9)–(A12) are satisfied. Therefore, by the extended version of Theorem 3.2 (see also
Corollary 3.3), every solution of (4.1) is oscillatory if

λi > 0 for all i ∈ {0, 1, . . . , n} and n
p

λn
i
>

1
e

for some i ∈ {0, 1, . . . , n}

(see [8]), and by the extended version of Theorem 3.6 (see also Corollary 3.8), every solution
tends to zero asymptotically if

p
λn

i
> 0 and n

p
λn

i
≤ π

2
for all i ∈ {0, 1, . . . , n}

(see [6, 9]).
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